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Quantum mechanics is generally regarded as the physical theory that is our best 

candidate for a fundamental and universal description of the physical world. The 

conceptual framework employed by this theory differs drastically from that of classical 

physics. Indeed, the transition from classical to quantum physics marks a genuine 

revolution in our understanding of the physical world. 

One striking aspect of the difference between classical and quantum physics is that 

whereas classical mechanics presupposes that exact simultaneous values can be assigned 

to all physical quantities, quantum mechanics denies this possibility, the prime example 

being the position and momentum of a particle. According to quantum mechanics, the 

more precisely the position (momentum) of a particle is given, the less precisely can one 

say what its momentum (position) is. This is (a simplistic and preliminary formulation of) 

the quantum mechanical uncertainty principle for position and momentum. The 

uncertainty principle played an important role in many discussions on the philosophical 

implications of quantum mechanics, in particular in discussions on the consistency of the 

so-called Copenhagen interpretation, the interpretation endorsed by the founding 

fathers Heisenberg and Bohr. 

This should not suggest that the uncertainty principle is the only aspect of the conceptual 

difference between classical and quantum physics: the implications of quantum 

mechanics for notions as (non)-locality, entanglement and identity play no less havoc with 

classical intuitions. 
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1. Introduction 

The uncertainty principle is certainly one of the most famous aspects of quantum 

mechanics. It has often been regarded as the most distinctive feature in which quantum 

mechanics differs from classical theories of the physical world. Roughly speaking, the 

uncertainty principle (for position and momentum) states that one cannot assign exact 

simultaneous values to the position and momentum of a physical system. Rather, these 

quantities can only be determined with some characteristic “uncertainties” that cannot 

become arbitrarily small simultaneously. But what is the exact meaning of this principle, 

and indeed, is it really a principle of quantum mechanics? (In his original work, Heisenberg 

only speaks of uncertainty relations.) And, in particular, what does it mean to say that a 

quantity is determined only up to some uncertainty? These are the main questions we 

will explore in the following, focusing on the views of Heisenberg and Bohr. 
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The notion of “uncertainty” occurs in several different meanings in the physical literature. 

It may refer to a lack of knowledge of a quantity by an observer, or to the experimental 

inaccuracy with which a quantity is measured, or to some ambiguity in the definition of a 

quantity, or to a statistical spread in an ensemble of similarly prepared systems. Also, 

several different names are used for such uncertainties: inaccuracy, spread, imprecision, 

indefiniteness, indeterminateness, indeterminacy, latitude, etc. As we shall see, even 

Heisenberg and Bohr did not decide on a single terminology for quantum mechanical 

uncertainties. Forestalling a discussion about which name is the most appropriate one in 

quantum mechanics, we use the name “uncertainty principle” simply because it is the 

most common one in the literature. 

2. Heisenberg 

2.1 Heisenberg’s road to the uncertainty relations 

Heisenberg introduced his famous relations in an article of 1927, entitled Ueber den 

anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. A (partial) 

translation of this title is: “On the anschaulich content of quantum theoretical kinematics 

and mechanics”. Here, the term anschaulich is particularly notable. Apparently, it is one 

of those German words that defy an unambiguous translation into other languages. 

Heisenberg’s title is translated as “On the physical content …” by Wheeler and Zurek 

(1983). His collected works (Heisenberg 1984) translate it as “On the perceptible 

content …”, while Cassidy’s biography of Heisenberg (Cassidy 1992), refers to the paper 

as “On the perceptual content …”. Literally, the closest translation of the 

term anschaulich is “visualizable”. But, as in most languages, words that make reference 

to vision are not always intended literally. Seeing is widely used as a metaphor for 

understanding, especially for immediate understanding. Hence, anschaulich also means 

“intelligible” or “intuitive”.[1] 

Why was this issue of the Anschaulichkeit of quantum mechanics such a prominent 

concern to Heisenberg? This question has already been considered by a number of 

commentators (Jammer 1974; Miller 1982; de Regt 1997; Beller 1999). For the answer, it 

turns out, we must go back a little in time. In 1925 Heisenberg had developed the first 

coherent mathematical formalism for quantum theory (Heisenberg 1925). His leading 

idea was that only those quantities that are in principle observable should play a role in 

the theory, and that all attempts to form a picture of what goes on inside the atom should 

be avoided. In atomic physics the observational data were obtained from spectroscopy 

and associated with atomic transitions. Thus, Heisenberg was led to consider the 

https://plato.stanford.edu/entries/qt-uncertainty/notes.html#note-1
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“transition quantities” as the basic ingredients of the theory. Max Born, later that year, 

realized that the transition quantities obeyed the rules of matrix calculus, a branch of 

mathematics that was not so well-known then as it is now. In a famous series of papers 

Heisenberg, Born and Jordan developed this idea into the matrix mechanics version of 

quantum theory. 

Formally, matrix mechanics remains close to classical mechanics. The central idea is that 

all physical quantities must be represented by infinite self-adjoint matrices (later 

identified with operators on a Hilbert space). It is postulated that the 

matrices QQ and PP representing the canonical position and momentum variables of a 

particle satisfy the so-called canonical commutation rule 

QP−PQ=iℏ(1)(1)QP−PQ=iℏ 

where ℏ=h/2πℏ=h/2π, hh denotes Planck’s constant, and boldface type is used to 

represent matrices (or operators). The new theory scored spectacular empirical success 

by encompassing nearly all spectroscopic data known at the time, especially after the 

concept of the electron spin was included in the theoretical framework. 

It came as a big surprise, therefore, when one year later, Erwin Schrödinger presented an 

alternative theory, that became known as wave mechanics. Schrödinger assumed that an 

electron in an atom could be represented as an oscillating charge cloud, evolving 

continuously in space and time according to a wave equation. The discrete frequencies in 

the atomic spectra were not due to discontinuous transitions (quantum jumps) as in 

matrix mechanics, but to a resonance phenomenon. Schrödinger also showed that the 

two theories were equivalent.[2] 

Even so, the two approaches differed greatly in interpretation and spirit. Whereas 

Heisenberg eschewed the use of visualizable pictures, and accepted discontinuous 

transitions as a primitive notion, Schrödinger claimed as an advantage of his theory that 

it was anschaulich. In Schrödinger’s vocabulary, this meant that the theory represented 

the observational data by means of continuously evolving causal processes in space and 

time. He considered this condition of Anschaulichkeit to be an essential requirement on 

any acceptable physical theory. Schrödinger was not alone in appreciating this aspect of 

his theory. Many other leading physicists were attracted to wave mechanics for the same 

reason. For a while, in 1926, before it emerged that wave mechanics had serious problems 

of its own, Schrödinger’s approach seemed to gather more support in the physics 

community than matrix mechanics. 

https://plato.stanford.edu/entries/qt-uncertainty/notes.html#note-2
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Understandably, Heisenberg was unhappy about this development. In a letter of 8 June 

1926 to Pauli he confessed that “The more I think about the physical part of Schrödinger’s 

theory, the more disgusting I find it”, and: “What Schrödinger writes about 

the Anschaulichkeit of his theory, … I consider Mist” (Pauli 1979: 328). Again, this last 

German term is translated differently by various commentators: as “junk” (Miller 1982) 

“rubbish” (Beller 1999) “crap” (Cassidy 1992), “poppycock” (Bacciagaluppi & Valentini 

2009) and perhaps more literally, as “bullshit” (Moore 1989; de Regt 1997). Nevertheless, 

in published writings, Heisenberg voiced a more balanced opinion. In a paper in Die 

Naturwissenschaften (1926) he summarized the peculiar situation that the simultaneous 

development of two competing theories had brought about. Although he argued that 

Schrödinger’s interpretation was untenable, he admitted that matrix mechanics did not 

provide the Anschaulichkeit which made wave mechanics so attractive. He concluded: 

to obtain a contradiction-free anschaulich interpretation, we still lack some essential 

feature in our image of the structure of matter. 

The purpose of his 1927 paper was to provide exactly this lacking feature. 

2.2 Heisenberg’s argument 

Let us now look at the argument that led Heisenberg to his uncertainty relations. He 

started by redefining the notion of Anschaulichkeit. Whereas Schrödinger associated this 

term with the provision of a causal space-time picture of the phenomena, Heisenberg, by 

contrast, declared: 

We believe we have gained anschaulich understanding of a physical theory, if in all simple 

cases, we can grasp the experimental consequences qualitatively and see that the theory 

does not lead to any contradictions. Heisenberg 1927: 172) 

His goal was, of course, to show that, in this new sense of the word, matrix mechanics 

could lay the same claim to Anschaulichkeit as wave mechanics. 

To do this, he adopted an operational assumption: terms like “the position of a particle” 

have meaning only if one specifies a suitable experiment by which “the position of a 

particle” can be measured. We will call this assumption the “measurement=meaning 

principle”. In general, there is no lack of such experiments, even in the domain of atomic 

physics. However, experiments are never completely accurate. We should be prepared to 

accept, therefore, that in general the meaning of these quantities is also determined only 

up to some characteristic inaccuracy. 
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As an example, he considered the measurement of the position of an electron by a 

microscope. The accuracy of such a measurement is limited by the wave length of the 

light illuminating the electron. Thus, it is possible, in principle, to make such a position 

measurement as accurate as one wishes, by using light of a very short wave length, 

e.g., γγ-rays. But for γγ-rays, the Compton effect cannot be ignored: the interaction of the 

electron and the illuminating light should then be considered as a collision of at least one 

photon with the electron. In such a collision, the electron suffers a recoil which disturbs 

its momentum. Moreover, the shorter the wave length, the larger is this change in 

momentum. Thus, at the moment when the position of the particle is accurately known, 

Heisenberg argued, its momentum cannot be accurately known: 

At the instant of time when the position is determined, that is, at the instant when the 

photon is scattered by the electron, the electron undergoes a discontinuous change in 

momentum. This change is the greater the smaller the wavelength of the light employed, 

i.e., the more exact the determination of the position. At the instant at which the position 

of the electron is known, its momentum therefore can be known only up to magnitudes 

which correspond to that discontinuous change; thus, the more precisely the position is 

determined, the less precisely the momentum is known, and conversely. (Heisenberg 

1927: 174–5) 

This is the first formulation of the uncertainty principle. In its present form it is an 

epistemological principle, since it limits what we can know about the electron. From 

“elementary formulae of the Compton effect” Heisenberg estimated the “imprecisions” 

to be of the order 

δpδq∼h(2)(2)δpδq∼h 

He continued: “In this circumstance we see the direct anschaulich content of the 

relation QP−PQ=iℏQP−PQ=iℏ.” 

He went on to consider other experiments, designed to measure other physical quantities 

and obtained analogous relations for time and energy: 

δtδE∼h(3)(3)δtδE∼h 

and action JJ and angle ww 

δwδJ∼h(4)(4)δwδJ∼h 

which he saw as corresponding to the “well-known” relations 



7 
 

tE−Et=iℏ or wJ−Jw=iℏ(5)(5)tE−Et=iℏ or wJ−Jw=iℏ 

However, these generalisations are not as straightforward as Heisenberg suggested. In 

particular, the status of the time variable in his several illustrations of relation (3) is not 

at all clear (Hilgevoord 2005; see also Section 2.5). 

Heisenberg summarized his findings in a general conclusion: all concepts used in classical 

mechanics are also well-defined in the realm of atomic processes. But, as a pure fact of 

experience (rein erfahrungsgemäß), experiments that serve to provide such a definition 

for one quantity are subject to particular indeterminacies, obeying relations (2)–(4) which 

prohibit them from providing a simultaneous definition of two canonically conjugate 

quantities. Note that in this formulation the emphasis has slightly shifted: he now speaks 

of a limit on the definition of concepts, i.e., not merely on what we can know, but what 

we can meaningfully say about a particle. Of course, this stronger formulation follows by 

application of the above measurement=meaning principle: if there are, as Heisenberg 

claims, no experiments that allow a simultaneous precise measurement of two conjugate 

quantities, then these quantities are also not simultaneously well-defined. 

Heisenberg’s paper has an interesting “Addition in proof” mentioning critical remarks by 

Bohr, who saw the paper only after it had been sent to the publisher. Among other things, 

Bohr pointed out that in the microscope experiment it is not the change of the 

momentum of the electron that is important, but rather the circumstance that this change 

cannot be precisely determined in the same experiment. An improved version of the 

argument, responding to this objection, is given in Heisenberg’s Chicago lectures of 1930. 

Here (Heisenberg 1930: 16), it is assumed that the electron is illuminated by light of 

wavelength λλ and that the scattered light enters a microscope with aperture angle εε. 

According to the laws of classical optics, the accuracy of the microscope depends on both 

the wave length and the aperture angle; Abbe’s criterium for its “resolving power”, i.e., 

the size of the smallest discernable details, gives 

δq∼λsinε.(6)(6)δq∼λsinε. 

On the other hand, the direction of a scattered photon, when it enters the microscope, is 

unknown within the angle εε, rendering the momentum change of the electron uncertain 

by an amount 

δp∼hsinελ(7)(7)δp∼hsinελ 

leading again to the result (2). 

https://plato.stanford.edu/entries/qt-uncertainty/#ex3
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8 
 

Let us now analyse Heisenberg’s argument in more detail. Note that, even in this 

improved version, Heisenberg’s argument is incomplete. According to Heisenberg’s 

“measurement=meaning principle”, one must also specify, in the given context, what the 

meaning is of the phrase “momentum of the electron”, in order to make sense of the 

claim that this momentum is changed by the position measurement. A solution to this 

problem can again be found in the Chicago lectures (Heisenberg 1930: 15). Here, he 

assumes that initially the momentum of the electron is precisely known, e.g., it has been 

measured in a previous experiment with an inaccuracy δpiδpi, which may be arbitrarily 

small. Then, its position is measured with inaccuracy δqδq, and after this, its final 

momentum is measured with an inaccuracy δpfδpf. All three measurements can be 

performed with arbitrary precision. Thus, the three quantities δpi,δqδpi,δq, 

and δpfδpf can be made as small as one wishes. If we assume further that the initial 

momentum has not changed until the position measurement, we can speak of a definite 

momentum until the time of the position measurement. Moreover we can give 

operational meaning to the idea that the momentum is changed during the position 

measurement: the outcome of the second momentum measurement (say pfpf will 

generally differ from the initial value pipi. In fact, one can also show that this change is 

discontinuous, by varying the time between the three measurements. 

Let us try to see, adopting this more elaborate set-up, if we can complete Heisenberg’s 

argument. We have now been able to give empirical meaning to the “change of 

momentum” of the electron, pf−pipf−pi. Heisenberg’s argument claims that the order of 

magnitude of this change is at least inversely proportional to the inaccuracy of the 

position measurement: 

|pf−pi|δq∼h(8)(8)|pf−pi|δq∼h 

However, can we now draw the conclusion that the momentum is only imprecisely 

defined? Certainly not. Before the position measurement, its value was pipi, after the 

measurement it is pfpf. One might, perhaps, claim that the value at the very instant of 

the position measurement is not yet defined, but we could simply settle this by a 

convention, e.g., we might assign the mean value (pi+pf)/2(pi+pf)/2 to the momentum at 

this instant. But then, the momentum is precisely determined at all instants, and 

Heisenberg’s formulation of the uncertainty principle no longer follows. The above 

attempt of completing Heisenberg’s argument thus overshoots its mark. 

A solution to this problem can again be found in the Chicago Lectures. Heisenberg admits 

that position and momentum can be known exactly. He writes: 
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If the velocity of the electron is at first known, and the position then exactly measured, 

the position of the electron for times previous to the position measurement may be 

calculated. For these past times, δpδqδpδq is smaller than the usual bound. (Heisenberg 

1930: 15) 

Indeed, Heisenberg says: “the uncertainty relation does not hold for the past”. 

Apparently, when Heisenberg refers to the uncertainty or imprecision of a quantity, he 

means that the value of this quantity cannot be given beforehand. In the sequence of 

measurements we have considered above, the uncertainty in the momentum after the 

measurement of position has occurred, refers to the idea that the value of the 

momentum is not fixed just before the final momentum measurement takes place. Once 

this measurement is performed, and reveals a value pfpf, the uncertainty relation no 

longer holds; these values then belong to the past. Clearly, then, Heisenberg is concerned 

with unpredictability: the point is not that the momentum of a particle changes, due to a 

position measurement, but rather that it changes by an unpredictable amount. It is, 

however always possible to measure, and hence define, the size of this change in a 

subsequent measurement of the final momentum with arbitrary precision. 

Although Heisenberg admits that we can consistently attribute values of momentum and 

position to an electron in the past, he sees little merit in such talk. He points out that 

these values can never be used as initial conditions in a prediction about the future 

behavior of the electron, or subjected to experimental verification. Whether or not we 

grant them physical reality is, as he puts it, a matter of personal taste. Heisenberg’s own 

taste is, of course, to deny their physical reality. For example, he writes, 

I believe that one can formulate the emergence of the classical “path” of a particle 

succinctly as follows: the “path” comes into being only because we observe it. (Heisenberg 

1927: 185) 

Apparently, in his view, a measurement does not only serve to give meaning to a quantity, 

it creates a particular value for this quantity. This may be called the 

“measurement=creation” principle. It is an ontological principle, for it states what is 

physically real. 

This then leads to the following picture. First we measure the momentum of the electron 

very accurately. By “measurement= meaning”, this entails that the term “the momentum 

of the particle” is now well-defined. Moreover, by the “measurement=creation” principle, 

we may say that this momentum is physically real. Next, the position is measured with 
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inaccuracy δqδq. At this instant, the position of the particle becomes well-defined and, 

again, one can regard this as a physically real attribute of the particle. However, the 

momentum has now changed by an amount that is unpredictable by an order of 

magnitude |pf−pi|∼h/δq|pf−pi|∼h/δq. The meaning and validity of this claim can be 

verified by a subsequent momentum measurement. 

The question is then what status we shall assign to the momentum of the electron just 

before its final measurement. Is it real? According to Heisenberg it is not. Before the final 

measurement, the best we can attribute to the electron is some unsharp, or fuzzy 

momentum. These terms are meant here in an ontological sense, characterizing a real 

attribute of the electron. 

2.3 The interpretation of Heisenberg’s uncertainty relations 

Heisenberg’s relations were soon considered to be a cornerstone of the Copenhagen 

interpretation of quantum mechanics. Just a few months later, Kennard (1927) already 

called them the “essential core” of the new theory. Taken together with Heisenberg’s 

contention that they provide the intuitive content of the theory and their prominent role 

in later discussions on the Copenhagen interpretation, a dominant view emerged in which 

the uncertainty relations were regarded as a fundamental principle of the theory. 

The interpretation of these relations has often been debated. Do Heisenberg’s relations 

express restrictions on the experiments we can perform on quantum systems, and, 

therefore, restrictions on the information we can gather about such systems; or do they 

express restrictions on the meaning of the concepts we use to describe quantum 

systems? Or else, are they restrictions of an ontological nature, i.e., do they assert that a 

quantum system simply does not possess a definite value for its position and momentum 

at the same time? The difference between these interpretations is partly reflected in the 

various names by which the relations are known, e.g., as “inaccuracy relations”, or: 

“uncertainty”, “indeterminacy” or “unsharpness relations”. The debate between these 

views has been addressed by many authors, but it has never been settled completely. Let 

it suffice here to make only two general observations. 

First, it is clear that in Heisenberg’s own view all the above questions stand or fall 

together. Indeed, we have seen that he adopted an operational 

“measurement=meaning” principle according to which the meaningfulness of a physical 

quantity was equivalent to the existence of an experiment purporting to measure that 

quantity. Similarly, his “measurement=creation” principle allowed him to attribute 
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physical reality to such quantities. Hence, Heisenberg’s discussions moved rather freely 

and quickly from talk about experimental inaccuracies to epistemological or ontological 

issues and back again. 

However, ontological questions seemed to be of somewhat less interest to him. For 

example, there is a passage (Heisenberg 1927: 197), where he discusses the idea that, 

behind our observational data, there might still exist a hidden reality in which quantum 

systems have definite values for position and momentum, unaffected by the uncertainty 

relations. He emphatically dismisses this conception as an unfruitful and meaningless 

speculation, because, as he says, the aim of physics is only to describe observable data. 

Similarly, in the Chicago Lectures, he warns against the fact that the human language 

permits the utterance of statements which have no empirical content, but nevertheless 

produce a picture in our imagination. He notes, 

One should be especially careful in using the words “reality”, “actually”, etc., since these 

words very often lead to statements of the type just mentioned. (Heisenberg 1930: 11) 

So, Heisenberg also endorsed an interpretation of his relations as rejecting a reality in 

which particles have simultaneous definite values for position and momentum. 

The second observation is that although for Heisenberg experimental, informational, 

epistemological and ontological formulations of his relations were, so to say, just different 

sides of the same coin, this is not so for those who do not share his operational principles 

or his view on the task of physics. Alternative points of view, in which e.g., the ontological 

reading of the uncertainty relations is denied, are therefore still viable. The statement, 

often found in the literature of the thirties, that Heisenberg had proved the impossibility 

of associating a definite position and momentum to a particle is certainly wrong. But the 

precise meaning one can coherently attach to Heisenberg’s relations depends rather 

heavily on the interpretation one favors for quantum mechanics as a whole. And because 

no agreement has been reached on this latter issue, one cannot expect agreement on the 

meaning of the uncertainty relations either. 

2.4 Uncertainty relations or uncertainty principle? 

Let us now move to another question about Heisenberg’s relations: do they express 

a principle of quantum theory? Probably the first influential author to call these relations 

a “principle” was Eddington, who, in his Gifford Lectures of 1928 referred to them as the 

“Principle of Indeterminacy”. In the English literature the name uncertainty principle 

became most common. It is used both by Condon and Robertson in 1929, and also in the 
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English version of Heisenberg’s Chicago Lectures (Heisenberg 1930), although, 

remarkably, nowhere in the original German version of the same book (see also Cassidy 

1998). Indeed, Heisenberg never seems to have endorsed the name “principle” for his 

relations. His favourite terminology was “inaccuracy relations” 

(Ungenauigkeitsrelationen) or “indeterminacy relations” (Unbestimmtheitsrelationen). 

We know only one passage, in Heisenberg’s own Gifford lectures, delivered in 1955–56 

(Heisenberg 1958: 43), where he mentioned that his relations “are usually called relations 

of uncertainty or principle of indeterminacy”. But this can well be read as his yielding to 

common practice rather than his own preference. 

But does the relation (2) qualify as a principle of quantum mechanics? Several authors, 

foremost Karl Popper (1967), have contested this view. Popper argued that the 

uncertainty relations cannot be granted the status of a principle on the grounds that they 

are derivable from the theory, whereas one cannot obtain the theory from the 

uncertainty relations. (The argument being that one can never derive any equation, say, 

the Schrödinger equation, or the commutation relation (1), from an inequality.) 

Popper’s argument is, of course, correct but we think it misses the point. There are many 

statements in physical theories which are called principles even though they are in fact 

derivable from other statements in the theory in question. A more appropriate departing 

point for this issue is not the question of logical priority but rather Einstein’s distinction 

between “constructive theories” and “principle theories”. 

Einstein proposed this famous classification in Einstein 1919. Constructive theories are 

theories which postulate the existence of simple entities behind the phenomena. They 

endeavour to reconstruct the phenomena by framing hypotheses about these entities. 

Principle theories, on the other hand, start from empirical principles, i.e., general 

statements of empirical regularities, employing no or only a bare minimum of theoretical 

terms. The purpose is to build up the theory from such principles. That is, one aims to 

show how these empirical principles provide sufficient conditions for the introduction of 

further theoretical concepts and structure. 

The prime example of a theory of principle is thermodynamics. Here the role of the 

empirical principles is played by the statements of the impossibility of various kinds of 

perpetual motion machines. These are regarded as expressions of brute empirical fact, 

providing the appropriate conditions for the introduction of the concepts of energy and 

entropy and their properties. (There is a lot to be said about the tenability of this view, 

but that is not our topic here.) 

https://plato.stanford.edu/entries/qt-uncertainty/#ex2
https://plato.stanford.edu/entries/qt-uncertainty/#ex1
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Now obviously, once the formal thermodynamic theory is built, one can also derive the 

impossibility of the various kinds of perpetual motion. (They would violate the laws of 

energy conservation and entropy increase.) But this derivation should not misguide one 

into thinking that they were no principles of the theory after all. The point is just that 

empirical principles are statements that do not rely on the theoretical concepts (in this 

case entropy and energy) for their meaning. They are interpretable independently of 

these concepts and, further, their validity on the empirical level still provides the physical 

content of the theory. 

A similar example is provided by special relativity, another theory of principle, which 

Einstein deliberately designed after the ideal of thermodynamics. Here, the empirical 

principles are the light postulate and the relativity principle. Again, once we have built up 

the modern theoretical formalism of the theory (Minkowski space-time), it is 

straightforward to prove the validity of these principles. But again this does not count as 

an argument for claiming that they were no principles after all. So the question whether 

the term “principle” is justified for Heisenberg’s relations, should, in our view, be 

understood as the question whether they are conceived of as empirical principles. 

One can easily show that this idea was never far from Heisenberg’s intentions. We have 

already seen that Heisenberg presented the relations as the result of a “pure fact of 

experience”. A few months after his 1927 paper, he wrote a popular paper “Über die 

Grundprincipien der Quantenmechanik” (“On the fundamental principles of quantum 

mechanics”) where he made the point even more clearly. Here Heisenberg described his 

recent break-through in the interpretation of the theory as follows: “It seems to be a 

general law of nature that we cannot determine position and velocity simultaneously with 

arbitrary accuracy”. Now actually, and in spite of its title, the paper does not identify or 

discuss any “fundamental principle” of quantum mechanics. So, it must have seemed 

obvious to his readers that he intended to claim that the uncertainty relation was a 

fundamental principle, forced upon us as an empirical law of nature, rather than a result 

derived from the formalism of the theory. 

This reading of Heisenberg’s intentions is corroborated by the fact that, even in his 1927 

paper, applications of his relation frequently present the conclusion as a matter of 

principle. For example, he says “In a stationary state of an atom its phase is in 

principle indeterminate” (Heisenberg 1927: 177, [emphasis added]). Similarly, in a paper 

of 1928, he described the content of his relations as: 
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It has turned out that it is in principle impossible to know, to measure the position and 

velocity of a piece of matter with arbitrary accuracy. (Heisenberg 1984: 26, [emphasis 

added]) 

So, although Heisenberg did not originate the tradition of calling his relations a principle, 

it is not implausible to attribute the view to him that the uncertainty relations represent 

an empirical principle that could serve as a foundation of quantum mechanics. In fact, his 

1927 paper expressed this desire explicitly: 

Surely, one would like to be able to deduce the quantitative laws of quantum mechanics 

directly from their anschaulich foundations, that is, essentially, relation [(2)]. (ibid: 196) 

This is not to say that Heisenberg was successful in reaching this goal, or that he did not 

express other opinions on other occasions. 

Let us conclude this section with three remarks. First, if the uncertainty relation is to serve 

as an empirical principle, one might well ask what its direct empirical support is. In 

Heisenberg’s analysis, no such support is mentioned. His arguments concerned thought 

experiments in which the validity of the theory, at least at a rudimentary level, is implicitly 

taken for granted. Jammer (1974: 82) conducted a literature search for high precision 

experiments that could seriously test the uncertainty relations and concluded they were 

still scarce in 1974. Real experimental support for the uncertainty relations in experiments 

in which the inaccuracies are close to the quantum limit have come about only more 

recently (see Kaiser, Werner, and George 1983; Uffink 1985; Nairz, Andt, and Zeilinger 

2002). 

A second point is the question whether the theoretical structure or the quantitative laws 

of quantum theory can indeed be derived on the basis of the uncertainty principle, as 

Heisenberg wished. Serious attempts to build up quantum theory as a full-fledged Theory 

of Principle on the basis of the uncertainty principle have never been carried out. Indeed, 

the most Heisenberg could and did claim in this respect was that the uncertainty relations 

created “room” (Heisenberg 1927: 180) or “freedom” (Heisenberg 1931: 43) for the 

introduction of some non-classical mode of description of experimental data, not that 

they uniquely lead to the formalism of quantum mechanics. A serious proposal to 

approach quantum mechanics as a theory of principle was provided more recently by Bub 

(2000) and Chiribella & Spekkens (2016). But, remarkably, this proposal does not use the 

uncertainty relation as one of its fundamental principles. Third, it is remarkable that in his 

later years Heisenberg put a somewhat different gloss on his relations. In his 

https://plato.stanford.edu/entries/qt-uncertainty/#ex2
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autobiography Der Teil und das Ganze of 1969 he described how he had found his 

relations inspired by a remark by Einstein that “it is the theory which decides what one 

can observe”—thus giving precedence to theory above experience, rather than the other 

way around. Some years later he even admitted that his famous discussions of thought 

experiments were actually trivial since 

… if the process of observation itself is subject to the laws of quantum theory, it must be 

possible to represent its result in the mathematical scheme of this theory. (Heisenberg 

1975: 6) 

2.5 Mathematical elaboration 

When Heisenberg introduced his relation, his argument was based only on qualitative 

examples. He did not provide a general, exact derivation of his relations.[3] Indeed, he did 

not even give a definition of the uncertainties δqδq, etc., occurring in these relations. Of 

course, this was consistent with the announced goal of that paper, i.e., to provide some 

qualitative understanding of quantum mechanics for simple experiments. 

The first mathematically exact formulation of the uncertainty relations is due to Kennard. 

He proved in 1927 the theorem that for all normalized state vectors |ψ⟩|ψ⟩ the following 

inequality holds: 

ΔψPΔψQ≥ℏ/2(9)(9)ΔψPΔψQ≥ℏ/2 

Here, ΔψPΔψP and ΔψQΔψQ are standard deviations of position and momentum in the 

state vector |ψ⟩|ψ⟩, i.e., 

(ΔψP)2(ΔψQ)2=⟨P2⟩ψ−⟨P⟩2ψ=⟨Q2⟩ψ−⟨Q⟩2ψ(10)(10)(ΔψP)2=⟨P2⟩ψ−⟨P⟩ψ2(ΔψQ)2=⟨Q2⟩

ψ−⟨Q⟩ψ2 

where ⟨⋅⟩ψ=⟨ψ∣⋅∣ψ⟩⟨⋅⟩ψ=⟨ψ∣⋅∣ψ⟩ denotes the expectation value in state |ψ⟩|ψ⟩. 

Equivalently we can use the wave function ψ(q)ψ(q) and its Fourier transform: 

ψ(q)ψ~(p)=⟨q∣ψ⟩=⟨p∣ψ⟩=12πℏ−−−√∫dqe−ipq/ℏψ(q)(11)(11)ψ(q)=⟨q∣ψ⟩ψ~(p)=⟨p∣ψ⟩=12π

ℏ∫dqe−ipq/ℏψ(q) 

to write 

(ΔψQ)2(ΔψP)2=∫dq|ψ(q)|2q2−(∫dq|ψ(q)|2q)2=∫dp|ψ~(p)|2p2−(∫dp|ψ~(p)|2p)2(ΔψQ)

2=∫dq|ψ(q)|2q2−(∫dq|ψ(q)|2q)2(ΔψP)2=∫dp|ψ~(p)|2p2−(∫dp|ψ~(p)|2p)2 

https://plato.stanford.edu/entries/qt-uncertainty/notes.html#note-3
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The inequality (9) was generalized by Robertson (1929) who proved that for all 

observables (self-adjoint operators) AA and BB: 

ΔψAΔψB≥12|⟨[A,B]⟩ψ|(12)(12)ΔψAΔψB≥12|⟨[A,B]⟩ψ| 

where [A,B]:=AB−BA[A,B]:=AB−BA denotes the commutator. 

Since the above inequalities (9) and (12) have the virtue of being exact, in contrast to 

Heisenberg’s original semi-quantitative formulation, it is tempting to regard them as the 

exact counterpart of Heisenberg’s relations (2)–(4). Indeed, such was Heisenberg’s own 

view. In his Chicago Lectures (Heisenberg 1930: 15–19), he presented Kennard’s 

derivation of relation (9) and claimed that “this proof does not differ at all in 

mathematical content” from his semi-quantitative argument, the only difference being 

that now “the proof is carried through exactly”. 

But it may be useful to point out that both in status and intended role there is a difference 

between Kennard’s inequality and Heisenberg’s previous formulation (2). The inequalities 

discussed here are not statements of empirical fact, but theorems of the quantum 

mechanical formalism. As such, they presuppose the validity of this formalism, and in 

particular the commutation relation (1), rather than elucidating its intuitive content or to 

create “room” or “freedom” for the validity of this formalism. At best, one should see the 

above inequalities as showing that the formalism is consistent with Heisenberg’s 

empirical principle. 

This situation is similar to that arising in other theories of principle where, as noted 

in Section 2.4, one often finds that, next to an empirical principle, the formalism also 

provides a corresponding theorem. And similarly, this situation should not, by itself, cast 

doubt on the question whether Heisenberg’s relation can be regarded as a principle of 

quantum mechanics. 

There is a second notable difference between (2) and (9). Heisenberg did not give a 

general definition for the “uncertainties” δpδp and δqδq. The most definite remark he 

made about them was that they could be taken as “something like the mean error”. In 

the discussions of thought experiments, he and Bohr would always quantify uncertainties 

on a case-to-case basis by choosing some parameters which happened to be relevant to 

the experiment at hand. By contrast, the inequalities (9) and (12) employ a single specific 

expression as a measure for “uncertainty”: the standard deviation. At the time, this choice 

was not unnatural, given that this expression is well-known and widely used in error 

theory and the description of statistical fluctuations. However, there was very little or no 

https://plato.stanford.edu/entries/qt-uncertainty/#ex9
https://plato.stanford.edu/entries/qt-uncertainty/#ex9
https://plato.stanford.edu/entries/qt-uncertainty/#ex12
https://plato.stanford.edu/entries/qt-uncertainty/#ex2
https://plato.stanford.edu/entries/qt-uncertainty/#ex4
https://plato.stanford.edu/entries/qt-uncertainty/#ex9
https://plato.stanford.edu/entries/qt-uncertainty/#ex2
https://plato.stanford.edu/entries/qt-uncertainty/#ex1
https://plato.stanford.edu/entries/qt-uncertainty/
https://plato.stanford.edu/entries/qt-uncertainty/#ex2
https://plato.stanford.edu/entries/qt-uncertainty/#ex9
https://plato.stanford.edu/entries/qt-uncertainty/#ex9
https://plato.stanford.edu/entries/qt-uncertainty/#ex12
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discussion of whether this choice was appropriate for a general formulation of the 

uncertainty relations. A standard deviation reflects the spread or expected fluctuations in 

a series of measurements of an observable in a given state. It is not at all easy to connect 

this idea with the concept of the “inaccuracy” of a measurement, such as the resolving 

power of a microscope. In fact, even though Heisenberg had taken Kennard’s inequality 

as the precise formulation of the uncertainty relation, he and Bohr never relied on 

standard deviations in their many discussions of thought experiments, and indeed, it has 

been shown (Uffink and Hilgevoord 1985; Hilgevoord and Uffink 1988) that these 

discussions cannot be framed in terms of standard deviations. 

Another problem with the above elaboration is that the “well-known” relations (5) are 

actually false if energy EE and action JJ are to be positive operators (Jordan 1927). In that 

case, self-adjoint operators tt and ww do not exist and inequalities analogous 

to (9) cannot be derived. Also, these inequalities do not hold for angle and angular 

momentum (Uffink 1990). These obstacles have led to a quite extensive literature on 

time-energy and angle-action uncertainty relations (Busch 1990; Hilgevoord 1996, 1998, 

2005; Muga et al. 2002; Hilgevoord and Atkinson 2011; Pashby 2015). 

3. Bohr 

In spite of the fact that Heisenberg’s and Bohr’s views on quantum mechanics are often 

lumped together as (part of) “the Copenhagen interpretation”, there is considerable 

difference between their views on the uncertainty relations. 

3.1 From wave-particle duality to complementarity 

Long before the development of modern quantum mechanics, Bohr had been particularly 

concerned with the problem of particle-wave duality, i.e., the problem that experimental 

evidence on the behaviour of both light and matter seemed to demand a wave picture in 

some cases, and a particle picture in others. Yet these pictures are mutually exclusive. 

Whereas a particle is always localized, the very definition of the notions of wavelength 

and frequency requires an extension in space and in time. Moreover, the classical particle 

picture is incompatible with the characteristic phenomenon of interference. 

His long struggle with wave-particle duality had prepared him for a radical step when the 

dispute between matrix and wave mechanics broke out in 1926–27. For the main 

contestants, Heisenberg and Schrödinger, the issue at stake was which view could claim 

to provide a single coherent and universal framework for the description of the 

observational data. The choice was, essentially between a description in terms of 

https://plato.stanford.edu/entries/qt-uncertainty/#ex5
https://plato.stanford.edu/entries/qt-uncertainty/#ex9
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continuously evolving waves, or else one of particles undergoing discontinuous quantum 

jumps. By contrast, Bohr insisted that elements from both views were equally valid and 

equally needed for an exhaustive description of the data. His way out of the contradiction 

was to renounce the idea that the pictures refer, in a literal one-to-one correspondence, 

to physical reality. Instead, the applicability of these pictures was to become dependent 

on the experimental context. This is the gist of the viewpoint he called 

“complementarity”. 

Bohr first conceived the general outline of his complementarity argument in early 1927, 

during a skiing holiday in Norway, at the same time when Heisenberg wrote his 

uncertainty paper. When he returned to Copenhagen and found Heisenberg’s 

manuscript, they got into an intense discussion. On the one hand, Bohr was quite 

enthusiastic about Heisenberg’s ideas which seemed to fit wonderfully with his own 

thinking. Indeed, in his subsequent work, Bohr always presented the uncertainty relations 

as the symbolic expression of his complementarity viewpoint. On the other hand, he 

criticized Heisenberg severely for his suggestion that these relations were due to 

discontinuous changes occurring during a measurement process. Rather, Bohr argued, 

their proper derivation should start from the indispensability of both particle and wave 

concepts. He pointed out that the uncertainties in the experiment did not exclusively arise 

from the discontinuities but also from the fact that in the experiment we need to take 

into account both the particle theory and the wave theory. It is not so much the unknown 

disturbance which renders the momentum of the electron uncertain but rather the fact 

that the position and the momentum of the electron cannot be simultaneously defined 

in this experiment (see the “Addition in Proof” to Heisenberg’s paper). 

We shall not go too deeply into the matter of Bohr’s interpretation of quantum mechanics 

since we are mostly interested in Bohr’s view on the uncertainty principle. For a more 

detailed discussion of the former we refer to Scheibe (1973), Folse (1985), Honner (1987) 

and Murdoch (1987). It may be useful, however, to sketch some of the main points. 

Central in Bohr’s considerations is the language we use in physics. No matter how 

abstract and subtle the concepts of modern physics may be, they are essentially an 

extension of our ordinary language and a means to communicate the results of our 

experiments. These results, obtained under well-defined experimental circumstances, are 

what Bohr calls the “phenomena”. A phenomenon is “the comprehension of the effects 

observed under given experimental conditions” (Bohr 1939: 24), it is the resultant of a 

physical object, a measuring apparatus and the interaction between them in a concrete 
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experimental situation. The essential difference between classical and quantum physics 

is that in quantum physics the interaction between the object and the apparatus cannot 

be made arbitrarily small; the interaction must at least comprise one quantum. This is 

expressed by Bohr’s quantum postulate: 

[… the] essence [of the formulation of the quantum theory] may be expressed in the so-

called quantum postulate, which attributes to any atomic process an essential 

discontinuity or rather individuality, completely foreign to classical theories and 

symbolized by Planck’s quantum of action. (Bohr 1928: 580) 

A phenomenon, therefore, is an indivisible whole and the result of a measurement cannot 

be considered as an autonomous manifestation of the object itself independently of the 

measurement context. The quantum postulate forces upon us a new way of describing 

physical phenomena: 

In this situation, we are faced with the necessity of a radical revision of the foundation for 

the description and explanation of physical phenomena. Here, it must above all be 

recognized that, however far quantum effects transcend the scope of classical physical 

analysis, the account of the experimental arrangement and the record of the observations 

must always be expressed in common language supplemented with the terminology of 

classical physics. (Bohr 1948: 313) 

This is what Scheibe (1973) has called the “buffer postulate” because it prevents the 

quantum from penetrating into the classical description: A phenomenon must always be 

described in classical terms; Planck’s constant does not occur in this description. 

Together, the two postulates induce the following reasoning. In every phenomenon the 

interaction between the object and the apparatus comprises at least one quantum. But 

the description of the phenomenon must use classical notions in which the quantum of 

action does not occur. Hence, the interaction cannot be analysed in this description. On 

the other hand, the classical character of the description allows us to speak in terms of 

the object itself. Instead of saying: “the interaction between a particle and a photographic 

plate has resulted in a black spot in a certain place on the plate”, we are allowed to forgo 

mentioning the apparatus and say: “the particle has been found in this place”. The 

experimental context, rather than changing or disturbing pre-existing properties of the 

object, defines what can meaningfully be said about the object. 

Because the interaction between object and apparatus is left out in our description of the 

phenomenon, we do not get the whole picture. Yet, any attempt to extend our 
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description by performing the measurement of a different observable quantity of the 

object, or indeed, on the measurement apparatus, produces a new phenomenon and we 

are again confronted with the same situation. Because of the unanalyzable interaction in 

both measurements, the two descriptions cannot, generally, be united into a single 

picture. They are what Bohr calls complementary descriptions: 

[the quantum of action]…forces us to adopt a new mode of description designated as 

complementary in the sense that any given application of classical concepts precludes the 

simultaneous use of other classical concepts which in a different connection are equally 

necessary for the elucidation of the phenomena. (Bohr 1929: 10) 

The most important example of complementary descriptions is provided by the 

measurements of the position and momentum of an object. If one wants to measure the 

position of the object relative to a given spatial frame of reference, the measuring 

instrument must be rigidly fixed to the bodies which define the frame of reference. But 

this implies the impossibility of investigating the exchange of momentum between the 

object and the instrument and we are cut off from obtaining any information about the 

momentum of the object. If, on the other hand, one wants to measure the momentum of 

an object the measuring instrument must be able to move relative to the spatial reference 

frame. Bohr here assumes that a momentum measurement involves the registration of 

the recoil of some movable part of the instrument and the use of the law of momentum 

conservation. The looseness of the part of the instrument with which the object interacts 

entails that the instrument cannot serve to accurately determine the position of the 

object. Since a measuring instrument cannot be rigidly fixed to the spatial reference frame 

and, at the same time, be movable relative to it, the experiments which serve to precisely 

determine the position and the momentum of an object are mutually exclusive. Of course, 

in itself, this is not at all typical for quantum mechanics. But, because the interaction 

between object and instrument during the measurement can neither be neglected nor 

determined the two measurements cannot be combined. This means that in the 

description of the object one must choose between the assignment of a precise position 

or of a precise momentum. 

Similar considerations hold with respect to the measurement of time and energy. Just as 

the spatial coordinate system must be fixed by means of solid bodies so must the time 

coordinate be fixed by means of unperturbed, synchronised clocks. But it is precisely this 

requirement which prevents one from taking into account of the exchange of energy with 
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the instrument if this is to serve its purpose. Conversely, any conclusion about the object 

based on the conservation of energy prevents following its development in time. 

The conclusion is that in quantum mechanics we are confronted with a complementarity 

between two descriptions which are united in the classical mode of description: the 

space-time description (or coordination) of a process and the description based on the 

applicability of the dynamical conservation laws. The quantum forces us to give up the 

classical mode of description (also called the “causal” mode of description by Bohr[4]: it is 

impossible to form a classical picture of what is going on when radiation interacts with 

matter as, e.g., in the Compton effect. 

Any arrangement suited to study the exchange of energy and momentum between the 

electron and the photon must involve a latitude in the space-time description sufficient 

for the definition of wave-number and frequency which enter in the relation 

[E=hνE=hν and p=hσp=hσ]. Conversely, any attempt of locating the collision between the 

photon and the electron more accurately would, on account of the unavoidable 

interaction with the fixed scales and clocks defining the space-time reference frame, 

exclude all closer account as regards the balance of momentum and energy. (Bohr 1949: 

210) 

A causal description of the process cannot be attained; we have to content ourselves with 

complementary descriptions. “The viewpoint of complementarity may be regarded”, 

according to Bohr, “as a rational generalization of the very ideal of causality”. 

In addition to complementary descriptions Bohr also talks about complementary 

phenomena and complementary quantities. Position and momentum, as well as time and 

energy, are complementary quantities.[5] 

We have seen that Bohr’s approach to quantum theory puts heavy emphasis on the 

language used to communicate experimental observations, which, in his opinion, must 

always remain classical. By comparison, he seemed to put little value on arguments 

starting from the mathematical formalism of quantum theory. This informal approach is 

typical of all of Bohr’s discussions on the meaning of quantum mechanics. One might say 

that for Bohr the conceptual clarification of the situation has primary importance while 

the formalism is only a symbolic representation of this situation. 

This is remarkable since, finally, it is the formalism which needs to be interpreted. This 

neglect of the formalism is one of the reasons why it is so difficult to get a clear 

understanding of Bohr’s interpretation of quantum mechanics and why it has aroused so 

https://plato.stanford.edu/entries/qt-uncertainty/notes.html#note-4
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much controversy. We close this section by citing from an article of 1948 to show how 

Bohr conceived the role of the formalism of quantum mechanics: 

The entire formalism is to be considered as a tool for deriving predictions, of definite or 

statistical character, as regards information obtainable under experimental conditions 

described in classical terms and specified by means of parameters entering into the 

algebraic or differential equations of which the matrices or the wave-functions, 

respectively, are solutions. These symbols themselves, as is indicated already by the use 

of imaginary numbers, are not susceptible to pictorial interpretation; and even derived 

real functions like densities and currents are only to be regarded as expressing the 

probabilities for the occurrence of individual events observable under well-defined 

experimental conditions. (Bohr 1948: 314) 

3.2 Bohr’s view on the uncertainty relations 

In his Como lecture, published in 1928, Bohr gave his own version of a derivation of the 

uncertainty relations between position and momentum and between time and energy. 

He started from the relations 

E=hν and p=h/λ(13)(13)E=hν and p=h/λ 

which connect the notions of energy EE and momentum pp from the particle picture with 

those of frequency νν and wavelength λλ from the wave picture. He noticed that a wave 

packet of limited extension in space and time can only be built up by the superposition of 

a number of elementary waves with a large range of wave numbers and frequencies. 

Denoting the spatial and temporal extensions of the wave packet by ΔxΔx and ΔtΔt, and 

the extensions in the wave number σ:=1/λσ:=1/λ and frequency by ΔσΔσ and ΔνΔν, it 

follows from Fourier analysis that in the most favorable case ΔxΔσ≈ΔtΔν≈1ΔxΔσ≈ΔtΔν≈1, 

and, using (13), one obtains the relations 

ΔtΔE≈ΔxΔp≈h(14)(14)ΔtΔE≈ΔxΔp≈h 

Note that Δx,ΔσΔx,Δσ, etc., are not standard deviations but unspecified measures of the 

size of a wave packet. (The original text has equality signs instead of approximate equality 

signs, but, since Bohr does not define the spreads exactly the use of approximate equality 

signs seems more in line with his intentions. Moreover, Bohr himself used approximate 

equality signs in later presentations.) These equations determine, according to Bohr: 

the highest possible accuracy in the definition of the energy and momentum of the 

individuals associated with the wave field. (Bohr 1928: 571). 
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He noted, 

This circumstance may be regarded as a simple symbolic expression of the 

complementary nature of the space-time description and the claims of causality. (ibid).[6] 

We note a few points about Bohr’s view on the uncertainty relations. First of all, Bohr 

does not refer to discontinuous changes in the relevant quantities during the 

measurement process. Rather, he emphasizes the possibility of defining these quantities. 

This view is markedly different from Heisenberg’s view. A draft version of the Como 

lecture is even more explicit on the difference between Bohr and Heisenberg: 

These reciprocal uncertainty relations were given in a recent paper of Heisenberg as the 

expression of the statistical element which, due to the feature of discontinuity implied in 

the quantum postulate, characterizes any interpretation of observations by means of 

classical concepts. It must be remembered, however, that the uncertainty in question is 

not simply a consequence of a discontinuous change of energy and momentum say during 

an interaction between radiation and material particles employed in measuring the 

space-time coordinates of the individuals. According to the above considerations the 

question is rather that of the impossibility of defining rigorously such a change when the 

space-time coordination of the individuals is also considered. (Bohr 1985: 93) 

Indeed, Bohr not only rejected Heisenberg’s argument that these relations are due to 

discontinuous disturbances implied by the act of measuring, but also his view that the 

measurement process creates a definite result: 

The unaccustomed features of the situation with which we are confronted in quantum 

theory necessitate the greatest caution as regard all questions of terminology. Speaking, 

as it is often done of disturbing a phenomenon by observation, or even of creating 

physical attributes to objects by measuring processes is liable to be confusing, since all 

such sentences imply a departure from conventions of basic language which even though 

it can be practical for the sake of brevity, can never be unambiguous. (Bohr 1939: 24) 

Nor did he approve of an epistemological formulation or one in terms of experimental 

inaccuracies: 

[…] a sentence like “we cannot know both the momentum and the position of an atomic 

object” raises at once questions as to the physical reality of two such attributes of the 

object, which can be answered only by referring to the mutual exclusive conditions for an 

https://plato.stanford.edu/entries/qt-uncertainty/notes.html#note-6
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unambiguous use of space-time concepts, on the one hand, and dynamical conservation 

laws on the other hand. (Bohr 1948: 315; also Bohr 1949: 211) 

It would in particular not be out of place in this connection to warn against a 

misunderstanding likely to arise when one tries to express the content of Heisenberg’s 

well-known indeterminacy relation by such a statement as “the position and momentum 

of a particle cannot simultaneously be measured with arbitrary accuracy”. According to 

such a formulation it would appear as though we had to do with some arbitrary 

renunciation of the measurement of either the one or the other of two well-defined 

attributes of the object, which would not preclude the possibility of a future theory taking 

both attributes into account on the lines of the classical physics. (Bohr 1937: 292) 

Instead, Bohr always stressed that the uncertainty relations are first and foremost an 

expression of complementarity. This may seem odd since complementarity is a 

dichotomic relation between two types of description whereas the uncertainty relations 

allow for intermediate situations between two extremes. They “express” the dichotomy 

in the sense that if we take the energy and momentum to be perfectly well-defined, 

symbolically ΔE=ΔpΔE=Δp = 0, the position and time variables are completely 

undefined, Δx=Δt=∞Δx=Δt=∞, and vice versa. But they also allow intermediate situations 

in which the mentioned uncertainties are all non-zero and finite. This more positive 

aspect of the uncertainty relation is mentioned in the Como lecture: 

At the same time, however, the general character of this relation makes it possible to a 

certain extent to reconcile the conservation laws with the space-time coordination of 

observations, the idea of a coincidence of well-defined events in space-time points being 

replaced by that of unsharply defined individuals within space-time regions. (Bohr 1928: 

571) 

However, Bohr never followed up on this suggestion that we might be able to strike a 

compromise between the two mutually exclusive modes of description in terms of 

unsharply defined quantities. Indeed, an attempt to do so, would take the formalism of 

quantum theory more seriously than the concepts of classical language, and this step Bohr 

refused to take. Instead, in his later writings he would be content with stating that the 

uncertainty relations simply defy an unambiguous interpretation in classical terms: 

These so-called indeterminacy relations explicitly bear out the limitation of causal 

analysis, but it is important to recognize that no unambiguous interpretation of such a 
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relation can be given in words suited to describe a situation in which physical attributes 

are objectified in a classical way. (Bohr 1948: 315) 

Finally, on a more formal level, we note that Bohr’s derivation does not rely on the 

commutation relations (1) and (5), but on Fourier analysis. These two approaches are 

equivalent as far as the relationship between position and momentum is concerned, but 

this is not so for time and energy since most physical systems do not have a time operator. 

Indeed, in his discussion with Einstein (Bohr 1949), Bohr considered time as a simple 

classical variable. This even holds for his famous discussion of the “clock-in-the-box” 

thought-experiment where the time, as defined by the clock in the box, is treated from 

the point of view of classical general relativity. Thus, in an approach based on 

commutation relations, the position-momentum and time-energy uncertainty relations 

are not on equal footing, which is contrary to Bohr’s approach in terms of Fourier analysis. 

For more details see (Hilgevoord 1996 and 1998). 

4. The Minimal Interpretation 

In the previous two sections we have seen how both Heisenberg and Bohr attributed a 

far-reaching status to the uncertainty relations. They both argued that these relations 

place fundamental limits on the applicability of the usual classical concepts. Moreover, 

they both believed that these limitations were inevitable and forced upon us. However, 

we have also seen that they reached such conclusions by starting from radical and 

controversial assumptions. This entails, of course, that their radical conclusions remain 

unconvincing for those who reject these assumptions. Indeed, the operationalist-

positivist viewpoint adopted by these authors has long since lost its appeal among 

philosophers of physics. 

So the question may be asked what alternative views of the uncertainty relations are still 

viable. Of course, this problem is intimately connected with that of the interpretation of 

the wave function, and hence of quantum mechanics as a whole. Since there is no 

consensus about the latter, one cannot expect consensus about the interpretation of the 

uncertainty relations either. Here we only describe a point of view, which we call the 

“minimal interpretation”, that seems to be shared by both the adherents of the 

Copenhagen interpretation and of other views. 

In quantum mechanics a system is supposed to be described by its wave function, also 

called its quantum state or state vector. Given the state vector |ψ⟩|ψ⟩, one can derive 

probability distributions for all the physical quantities pertaining to the system, usually 

https://plato.stanford.edu/entries/qt-uncertainty/#ex1
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called its observables, such as its position, momentum, angular momentum, energy, etc. 

The operational meaning of these probability distributions is that they correspond to the 

distribution of the values obtained for these quantities in a long series of repetitions of 

the measurement. More precisely, one imagines a great number of copies of the system 

under consideration, all prepared in the same way. On each copy the momentum, say, is 

measured. Generally, the outcomes of these measurements differ and a distribution of 

outcomes is obtained. The theoretical momentum distribution derived from the quantum 

state is supposed to coincide with the hypothetical distribution of outcomes obtained in 

an infinite series of repetitions of the momentum measurement. The same holds, mutatis 

mutandis, for all the other physical quantities pertaining to the system. Note that no 

simultaneous measurements of two or more quantities are required in defining the 

operational meaning of the probability distributions. 

The uncertainty relations discussed above can be considered as statements about the 

spreads of the probability distributions of the several physical quantities arising from the 

same state. For example, the uncertainty relation between the position and momentum 

of a system may be understood as the statement that the position and momentum 

distributions cannot both be arbitrarily narrow—in some sense of the word “narrow”—in 

any quantum state. Inequality (9) is an example of such a relation in which the standard 

deviation is employed as a measure of spread. From this characterization of uncertainty 

relations follows that a more detailed interpretation of the quantum state than the one 

given in the previous paragraph is not required to study uncertainty relations as such. In 

particular, a further ontological or linguistic interpretation of the notion of uncertainty, 

as limits on the applicability of our concepts given by Heisenberg or Bohr, need not be 

supposed. 

Of course, this minimal interpretation leaves the question open whether it makes sense 

to attribute precise values of position and momentum to an individual system. Some 

interpretations of quantum mechanics, e.g., those of Heisenberg and Bohr, deny this; 

while others, e.g., the interpretation of de Broglie and Bohm insist that each individual 

system has a definite position and momentum (see the entry on Bohmian mechanics). 

The only requirement is that, as an empirical fact, it is not possible to prepare pure 

ensembles in which all systems have the same values for these quantities, or ensembles 

in which the spreads are smaller than allowed by quantum theory. Although 

interpretations of quantum mechanics, in which each system has a definite value for its 

https://plato.stanford.edu/entries/qt-uncertainty/#ex9
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position and momentum are still viable, this is not to say that they are without strange 

features of their own; they do not imply a return to classical physics. 

We end with a few remarks on this minimal interpretation. First, it may be noted that the 

minimal interpretation of the uncertainty relations is little more than filling in the 

empirical meaning of inequality (9). As such, this view shares many of the limitations we 

have noted above about this inequality. Indeed, it is not straightforward to relate the 

spread in a statistical distribution of measurement results with the inaccuracy of this 

measurement, such as, e.g., the resolving power of a microscope, or of a disturbance of 

the system by the measurement. Moreover, the minimal interpretation does not address 

the question whether one can make simultaneous accurate measurements of position 

and momentum. 

As a matter of fact, one can show that the standard formalism of quantum mechanics 

does not allow such simultaneous measurements. But this is not a consequence of 

relation (9). Rather, it follows from the fact that this formalism simply does not contain 

any observable that would accomplish such a task. The extension of this formalism that 

allows observables to be represented by positive-operator-valued measures or POVM’s, 

does allow the formal introduction of observables describing joint measurements (see 

also section 6.1). But even here, for the case of position and momentum, one finds that 

such measurements have to be “unsharp”, which entails that they cannot be regarded as 

simultaneous accurate measurements. 

If one feels that statements about inaccuracy of measurement, or the possibility of 

simultaneous measurements, belong to any satisfactory formulation of the uncertainty 

principle, one will need to look for other formulations of the uncertainty principle. Some 

candidates for such formulations will be discussed in Section 6. First, however, we will 

look at formulations of the uncertainty principle that stay firmly within the minimal 

interpretation, and differ from (9) only by using measures of uncertainty other than the 

standard deviation. 

5. Alternative measures of uncertainty 

While the standard deviation is the most well-known quantitative measure for 

uncertainty or the spread in the probability distribution, it is not the only one, and indeed 

it has distinctive drawbacks that other such measures may lack. For example, in the 

definition of the standard deviations (11) one can see that that the probability density 

function |ψ(q)|2|ψ(q)|2 is weighed by a quadratic factor q2q2 that puts increasing 

https://plato.stanford.edu/entries/qt-uncertainty/#ex9
https://plato.stanford.edu/entries/qt-uncertainty/#ex9
https://plato.stanford.edu/entries/qt-uncertainty/
https://plato.stanford.edu/entries/qt-uncertainty/
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https://plato.stanford.edu/entries/qt-uncertainty/#ex11


28 
 

emphasis on its tails. Therefore, the value of ΔψQΔψQ will depend predominantly at how 

this density behaves at the tails: if these falls off very quickly, e.g., like a Gaussian, it will 

be small, but if the tails drop off only slowly the standard deviation may be very large, 

even when most probability is concentrated in a small interval. 

The upshot of this objection is that having a lower bound on the product of the standard 

deviations of position and momentum, as the Heisenberg-Kennard uncertainty 

relation (9) gives, does not by itself rule out a state where both the probability densities 

for position and momentum are extremely concentrated, in the sense of having more 

than (1−ϵ)(1−ϵ) of their probability concentrated in a a region of size smaller than δδ, for 

any choice of ϵ,δ>0ϵ,δ>0. This means, in our view, that relation (9) actually fails to express 

what most physicists would take to be the very core idea of the uncertainty principle. 

One way to deal with this objection is to consider alternative measures to quantify the 

spread or uncertainty associated with a probability density. Here we discuss two such 

proposals. 

5.1 Landau-Pollak uncertainty relations 

The most straightforward alternative is to pick some value αα close to one, 

say α=0.9α=0.9, and ask for the width of the smallest interval that supports the 

fraction αα of the total probability distribution in position and similarly for momentum: 

Wα(Q,ψ)Wβ(P,ψ):=inf|I|{I:∫I|ψ(q)|2dq≥α}:=infI{∫I|ψ~(p)|2dp≥β}(15)(15)Wα(Q,ψ):=inf|I

|{I:∫I|ψ(q)|2dq≥α}Wβ(P,ψ):=infI{∫I|ψ~(p)|2dp≥β} 

In a previous work (Uffink and Hilgevoord 1985) we called such measures bulk widths, 

because they indicate how concentrated the ”bulk” (i.e., fraction αα or ββ) of the 

probability distribution is. Landau and Pollak (1961) obtained an uncertainty relation in 

terms of these bulk widths. 

Wα(Q,ψ)Wβ(P,ψ)≥2πℏ(αβ−(1−α)(1−β)−−−−−−−−−−−−√)2if α+β≥1/2(16)(16)Wα(Q,ψ)Wβ(

P,ψ)≥2πℏ(αβ−(1−α)(1−β))2if α+β≥1/2 

This Landau-Pollak inequality shows that if the choices of α,βα,β are not too low, there is 

a state-independent lower bound on the product of the bulk widths of the position and 

momentum distribution for any quantum state. 

Note that bulk widths are not so sensitive to the behavior of the tails of the distributions 

and, therefore, the Landau-Pollak inequality is immune to the objection above.Thus, this 

https://plato.stanford.edu/entries/qt-uncertainty/#ex9
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inequality expresses constraints on quantum mechanical states not contained in 

relation (9). Further, by the well-known Bienaymé-Chebyshev inequality, one has 

Wα(Q,ψ)Wβ(P,ψ)≤21−α−−−−−√ΔψQ≤21−β−−−−−√ΔψP(17)(17)Wα(Q,ψ)≤21−αΔψQWβ(P,

ψ)≤21−βΔψP 

so that inequality (16) implies (by choosing α,βα,β optimal) 

that ΔψQΔψP≥0.12ℏΔψQΔψP≥0.12ℏ. This, obviously, is not the best lower bound for the 

product of standard deviations, but the important point is here that the Landau-Pollak 

inequality (16) in terms of bulk widths implies the existence of a lower bound on the 

product of standard deviations, while conversely, the Heisenberg-Kennard 

equality (9) does not imply any bound on the product of bulk widths. A generalization of 

this approach to non-commuting observables in a finite-dimensional Hilbert space is 

discussed in Uffink 1990. 

5.2 Entropic uncertainty relations 

Another approach to express the uncertainty principle is to use entropic measures of 

uncertainty. The foremost example of these is the Shannon entropy, which for the 

position and momentum distribution of a given state vector |ψ⟩|ψ⟩ may be defined as: 

H(Q,ψ)H(P,ψ):=−∫|ψ(q)|2ln|ψ(q)|2dq:=−∫|ψ~(p)|2ln|ψ~(p)|2dp(18)(18)H(Q,ψ):=−∫|ψ(

q)|2ln|ψ(q)|2dqH(P,ψ):=−∫|ψ~(p)|2ln|ψ~(p)|2dp 

One can then show (see Beckner 1975; Białinicki-Birula and Micielski 1975) that 

H(Q,ψ)+H(P,ψ)≥ln(eπℏ)(19)(19)H(Q,ψ)+H(P,ψ)≥ln(eπℏ) 

A nice feature of this entropic uncertainty relation is that it provides a strict improvement 

of the Heisenberg-Kennard relation. That is to say, one can show (independently of 

quantum theory) that for any probability density function p(x)p(x) 

−∫p(x)lnp(x)dx≤ln(2πe−−−√Δx)(20)(20)−∫p(x)lnp(x)dx≤ln(2πeΔx) 

Applying this to the inequality (19) we get: 

ℏ2≤(2πe)−1exp(H(Q,ψ)+H(P,ψ))≤ΔψQΔψP(21)(21)ℏ2≤(2πe)−1exp(H(Q,ψ)+H(P,ψ))≤Δψ

QΔψP 

showing that the entropic uncertainty relation implies the Heisenberg-Kennard 

uncertainty relation. A drawback of this relation is that it does not completely evade the 

objection mentioned above, (i.e., these entropic measures of uncertainty can become as 

https://plato.stanford.edu/entries/qt-uncertainty/#ex9
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large as one pleases while 1−ϵ1−ϵ of the probability in the distribution is concentrated on 

a very small interval), but the examples needed to show this are admittedly more far-

fetched. 

For non-commuting observables in a nn-dimensional Hilbert space, one can similarly 

define an entropic uncertainty in the probability distribution |⟨ai∣ψ⟩|2|⟨ai∣ψ⟩|2 for a 

given state |ψ⟩|ψ⟩ and a complete set of eigenstates |ai⟩|ai⟩, (i=1,…n)(i=1,…n), of the 

observable AA: 

H(A,ψ):=−∑i=1n|⟨ai∣ψ⟩|2ln|⟨ai∣ψ⟩|2(22)(22)H(A,ψ):=−∑i=1n|⟨ai∣ψ⟩|2ln|⟨ai∣ψ⟩|2 

and H(B,ψ)H(B,ψ) similarly in terms of the probability distribution |⟨bj∣ψ⟩|2|⟨bj∣ψ⟩|2 for 

a complete set of eigenstates |bj⟩|bj⟩, (j=1,…,nj=1,…,n) of observable BB. Then we obtain 

the uncertainty relation (Maassen and Uffink 1988): 

H(bA,ψ)+H(B,ψ)≥2lnmaxi,j|⟨ai∣bj⟩|,(23)(23)H(bA,ψ)+H(B,ψ)≥2lnmaxi,j|⟨ai∣bj⟩|, 

which was further generalized and improved by (Frank and Lieb 2012). The most 

important advantage of these relations is that, in contrast to Robertson’s inequality (12), 

the lower bound is a positive constant, independent of the state. 

6. Uncertainty relations for inaccuracy and disturbance 

Both the standard deviation and the alternative measures of uncertainty considered in 

the previous subsection (and many more that we have not mentioned!) are designed to 

indicate the width or spread of a single given probability distribution. Applied to quantum 

mechanics, where the probability distributions for position and momentum are obtained 

from a given quantum state vector, one can use them to formulate uncertainty relations 

that characterize the spread in those distribution for any given state. The resulting 

inequalities then express limitations on what state-preparations quantum mechanics 

allows. They are thus expressions of what may be called a preparation uncertainty 

principle: 

In quantum mechanics, it is impossible to prepare any system in a state |ψ⟩|ψ⟩ such that 

its position and momentum are both precisely predictable, in the sense of having both 

the expected spread in a measurement of position and the expected spread in a 

momentum measurement arbitrarily small. 

The relations (9, 16, 19) all belong to this category; the mere difference being that they 

employ different measures of spread: viz. the standard deviation, the bulk width or the 

Shannon entropy. 
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https://plato.stanford.edu/entries/qt-uncertainty/#ex9
https://plato.stanford.edu/entries/qt-uncertainty/#ex16
https://plato.stanford.edu/entries/qt-uncertainty/#ex19


31 
 

Note that in this formulation, there is no reference to simultaneous or joint 

measurements, nor to any notion of accuracy like the resolving power of the 

measurement instrument, nor to the issue of how much the system in the state that is 

being measured is disturbed by this measurement. This section is devoted to attempts 

that go beyond the mold of this preparation uncertain principle. 

6.1 The recent debate on error-disturbance relations 

We have seen that in 1927 Heisenberg argued that the measurement of (say) position 

must necessarily disturb the conjugate variable (i.e., momentum) by an amount that is 

inversely proportional to the inaccuracy of measurement of the former. We have also 

seen that this idea was not maintained in the Kennard’s uncertainty relation (9), a relation 

that was embraced by Heisenberg (1930) and most textbooks. 

A rather natural question thus arises whether there are further inequalities in quantum 

mechanics that would address Heisenberg’s original thinking more directly, i.e., that do 

deal with how much one variable is disturbed by the accurate measurement of another. 

That is, we will look at attempts that would establish a claim which may be called 

a measurement uncertainty principle. 

In quantum mechanics, there is no measurement procedure by which one can accurately 

measure the position of a system without disturbing it momentum, in the sense that some 

measure of inaccuracy in position and some measure of the disturbance of momentum 

of the system by the measurement cannot both be arbitrarily small. 

This formulation of the uncertainty principle has always remained controversial. 

Uncertainty relations that would express this alleged principle are often called “error-

disturbance” relations or “noise-disturbance” relations We will look at two recent 

proposals to search for such relations: Ozawa (2003) and Busch, Lahti, and Werner (2013). 

In Ozawa’s approach, we assume that a system SS of interest in state |ψ⟩|ψ⟩ is coupled 

to a measurement device MM in state |χ⟩|χ⟩, and their interaction is governed by a 

unitary operator UU. On the Hilbert space of the joint system the observable QQ of the 

system SS we are interested in is represented by 

Qin=Q⊗1(24)(24)Qin=Q⊗1 

The measurement interaction will allow us to perform an (inaccurate) measurement of 

this quantity by reading off a pointer observable Q′Q′ of the measurement device after 

the interaction. Hence this inaccurate observable may be represented as 

https://plato.stanford.edu/entries/qt-uncertainty/#ex9
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Q′out=U†(1⊗Q′)U(25)(25)Qout′=U†(1⊗Q′)U 

The measure of noise in the measurement of QQ is then chosen as: 

ϵψ(Q):=⟨(Q′out−Qin)2⟩1/2ψ⊗χ(26)(26)ϵψ(Q):=⟨(Qout′−Qin)2⟩ψ⊗χ1/2 

A comparison of the initial momentum Pin=P⊗1Pin=P⊗1 and the final momentum after 

the measurement Pout=U†(P⊗1)UPout=U†(P⊗1)U is made by choosing a measure of 

the disturbance of PP by the measurement procedure: 

ηψ(P):=⟨(Pin−Pout)2⟩1/2ψ⊗χ(27)(27)ηψ(P):=⟨(Pin−Pout)2⟩ψ⊗χ1/2 

Ozawa obtained an inequality involving those two measures, which, however, is more 

involved than previous uncertainty relations. For our purposes, however, the important 

point is that Ozawa showed that the product ϵψ(Q)ηψ(P)ϵψ(Q)ηψ(P) has no positive 

lower bound. His conclusion from this was that Heisenberg’s noise-disturbance relation is 

violated. 

Yet, whether Ozawa’s result indeed succeeds in formulating Heisenberg’s qualitative 

discussion of disturbance and accuracy in the microscope example has come under 

dispute. See Busch, Lahti and Werner (2013, and 2014 (Other Internet Resources)), and 

Ozawa (2013, Other Internet Resources). 

An objection raised in this dispute is that a quantity 

like ⟨(Q′out−Qin)2⟩1/2⟨(Qout′−Qin)2⟩1/2 tells us very little about how good the 

observable Q′outQ′out can stand in as an inaccurate measurement of QinQin. The main 

point to observe here is that these operators generally do not commute, and that 

measurements of Q′outQout′, of QinQin and of their difference will require altogether 

three different measurement contexts. To require that ϵψ(Q)ϵψ(Q) vanishes, for 

example, means only that the state prepared belongs to the linear subspace 

corresponding to the zero eigenvalue of the operator Q′out−QinQout′−Qin, and therefore 

that ⟨Q′out⟩ψ=⟨Qin⟩ψ⟨Qout′⟩ψ=⟨Qin⟩ψ, but this does not preclude that the probability 

distribution of QoutQout in state ψψ might be wildly different from that of QinQin. But 

then no one would think of QoutQout as an accurate measurement of QinQin so that the 

definition of ϵψ(Q)ϵψ(Q) does not express what it is supposed to express. A similar 

objection can also be raised against ηψ(P)ηψ(P). 

Another observation is that Ozawa’s conclusion that there is no lower bound for his error-

disturbance product for is not at all surprising. That is, even without probing the system 

by a measurement apparatus, one can show that such a lower bound does not exist. If 
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the initial state of a system is prepared at time t=0t=0 as a Gaussian quasi-monochromatic 

wave packet with ⟨Q0⟩ψ=0⟨Q0⟩ψ=0 and evolves freely, we can use a time-of-flight 

measurement to learn about its later position. Ehrenfest’s theorem tells 

us: ⟨Qt⟩ψ=tm⟨P⟩ψ⟨Qt⟩ψ=tm⟨P⟩ψ. 

Hence, as an approximative measurement of the position QtQt, one could propose the 

observable Q′t=tmPQt′=tmP. It is known that under the stated conditions (and 

with mm and tt large) this approximation holds very well, i.e., we do not only 

have ⟨Q′t−Qt⟩ψ=0⟨Qt′−Qt⟩ψ=0, but also ⟨(Q′t−Qt)2⟩≈0⟨(Qt′−Qt)2⟩≈0, as nearly as we 

please. But since Q′tQt′ is just the momentum multiplied by a constant, its measurement 

will obviously not disturb the momentum of the system. In other words, for this example, 

one has ϵψ(Q)ϵψ(Q) as small as we please with zero disturbance of the momentum. 

Therefore, any hopes that there could be a positive lower bound for the 

product ϵψ(Q)ηψ(P)ϵψ(Q)ηψ(P) seem to be dashed, even with the simplest of 

measurement schemes, i.e. a free evolution. 

Ozawa’s results do not show that Heisenberg’s analysis of the microscope argument was 

wrong. Rather, they throw doubt on the appropriateness of the definitions he used to 

formalize Heisenberg’s informal argument. 

An entirely different analysis of the problem of substantiating a measurement uncertainty 

relation was offered by Busch, Lahti, and Werner (2013). These authors consider a 

measurement device MM that makes a joint unsharp measurement of both position and 

momentum. To describe such joint unsharp measurements, they employ the extended 

modern formalism that characterizes obervables not by self-adjoint operators but by 

positive-operator-valued measures (POVM’s). In the present case, this means that the 

measurement procedure is characterized by a collection of positive 

operators, M(p,q)M(p,q), where the pair p,qp,q represent the outcome variables of the 

measurement, with 

M(p,q)≥0,∬dpdqM(p,q)=1.(28)(28)M(p,q)≥0,∬dpdqM(p,q)=1. 

The two marginals of this POVM, 

M1(q)M2(p)=∫dpM(p,q)=∫dqM(p,q)(29)(29)M1(q)=∫dpM(p,q)M2(p)=∫dqM(p,q) 

are also POVM’s in their own right and represent the unsharp position Q′Q′ and unsharp 

momentum P′P′ observables respectively. (Note that these do not refer to a self-adjoint 

operator!) 
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For a system prepared in a state |ψ⟩|ψ⟩, the joint probability density of obtaining 

outcomes (p,q)(p,q) in the joint unsharp measurement (28) is then 

ρ(p,q):=⟨ψ∣M(p,q)∣ψ⟩,(30)(30)ρ(p,q):=⟨ψ∣M(p,q)∣ψ⟩, 

while the marginals of this joint probability distribution give the distributions 

for Q′Q′ and P′P′. 

μ′(q)ν′(p):=∫dpρ(p,q)=⟨ψ∣M1(q)∣ψ⟩:=∫dpρ(p,q)=⟨ψ∣M2(q)∣ψ⟩(31)(31)μ′(q):=∫dpρ(p,q)=⟨ψ∣

M1(q)∣ψ⟩ν′(p):=∫dpρ(p,q)=⟨ψ∣M2(q)∣ψ⟩ 

Since a joint sharp measurement of position and momentum is impossible in quantum 

mechanics, these marginal distributions (31) obtained from MM will differ from that of 

ideal measurements of QQ and of PP on the system of interest in state |ψ⟩|ψ⟩. However, 

one can indicate how much these marginals deviate from separate exact position and 

momentum measurements on the state |ψ⟩|ψ⟩ by a pairwise comparison of (31) to the 

exact distributions 

μ(q)ν(p):=|⟨q∣ψ⟩|2:=|⟨p∣ψ⟩|2(32)(32)μ(q):=|⟨q∣ψ⟩|2ν(p):=|⟨p∣ψ⟩|2 

In order to do so, BLW propose a distance function DD between probability distributions, 

such that D(μ,μ′)D(μ,μ′) tells us how close the marginal position distribution μ′(q)μ′(q) for 

the unsharp position Q′Q′ is to the exact distribution μ(q)μ(q) in a sharp position 

measurement, and likewise, D(ν,ν′)D(ν,ν′) tells us how close the marginal momentum 

distribution ν′(p)ν′(p) for P′P′ is to the the exact momentum distribution ν(p)ν(p). 

The distance they chose is the Wasserstein-2 distance, a.k.a. (a variation on) the earth-

movers distance. 

Definition (Wasserstein-2 distance) 

Let μ(x)μ(x) and μ′(y)μ′(y) be any two probability distributions on the real line, 

and γ(x,y)γ(x,y) any joint probability distribution that has μ′μ′ and μμ as its marginals. 

Then: 

D(μ,μ′):=infγ(∬(x−y)2γ(x,y)dxdy)1/2(33)(33)D(μ,μ′):=infγ(∬(x−y)2γ(x,y)dxdy)1/2 

Applying this definition to the case at hand, i.e.  pairwise to the quantum mechanical 

distributions μ′(q)μ′(q) and μ(q)μ(q) and to ν′(p)ν′(p) and ν(p)ν(p) in (31) and (32), BLW’s 

final step is to take a supremum over all possible input states |ψ⟩|ψ⟩ to obtain 

Δ(Q,Q′)Δ(P,P′)=sup|ψ⟩D(μ,μ′)=sup|ψ⟩D(ν,ν′)(34)(34)Δ(Q,Q′)=sup|ψ⟩D(μ,μ′)Δ(P,P′)=sup|

ψ⟩D(ν,ν′) 
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From these definitions, they obtain 

Δ(Q,Q′)Δ(P,P′)≥ℏ2(35)(35)Δ(Q,Q′)Δ(P,P′)≥ℏ2 

Arguing that Δ(Q,Q′)Δ(Q,Q′) provides a sensible measure for the inaccuracy or noise 

about position, and Δ(P,P′)Δ(P,P′) for the disturbance of momentum by any such joint 

unsharp measurement, the authors conclude, in contrast to Ozawa’s analysis, that an 

error-disturbance uncertainty relation does hold, which they take as “a remarkable 

vindication of Heisenberg’s intuitions” in the microscope thought experiment. 

In comparison of the two, there are a few positive remarks to make about the Busch-

Lahti-Werner (BLW) approach. First of all, by focusing on the distance (33) this approach 

is comparing entire probability distributions rather than just the expectations of operator 

differences. When this distance is very small, one is justified to conclude that the 

distribution has changed very little under the measurement procedure. This brings us 

closer to the conclusion that the error or disturbance introduced is small. Secondly, by 

introducing a supremum over all states to obtain Δ(Q,Q′)Δ(Q,Q′), it follows that when this 

latter expression is small, the measured distribution μ′μ′ differs only little from the exact 

distribution μμ whatever the state of the system is. As the authors argue, this means 

that Δ(Q,Q′)Δ(Q,Q′) can be seen as a figure-of-merit of the measurement device alone, 

and in this sense analogous to the resolving power of a microscope. 

But we also think there is an undesirable feature of the BLW approach. This is due to the 

supremum over states appearing twice, both in Δ(Q,Q′)Δ(Q,Q′) and in Δ(P,P′)Δ(P,P′). This 

feature, we argue, deprives their result from practical applicability. 

To elucidate: In concrete applications, one would prepare a system in some state (not 

exactly known) and perform a given joint measurement MM of Q′Q′ and P′P′. If it is given 

that, say, Δ(Q,Q′)Δ(Q,Q′) is very small, one can safely infer that QQ has been measured 

with small inaccuracy, since this guarantees that the measured position distribution 

differs very little from what an exact position measurement would give, regardless of the 

state of the system. Now, one would like to be able to infer that in this case the 

disturbance of the momentum PP from P′P′ must be considerable for the state prepared. 

But the BLW only gives us: 

Δ(P,P′)=sup|ψ⟩D(ν,ν′)≥ℏ2Δ(Q,Q′)Δ(P,P′)=sup|ψ⟩D(ν,ν′)≥ℏ2Δ(Q,Q′) 

and this does not imply anything for the state in question! Thus, the BLW uncertainty 

relation does not rule out that for some states it might be possible to perform a joint 
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measurement in which both D(μ,μ′)D(μ,μ′) and D(ν,ν′)D(ν,ν′) are very small, and in this 

sense have negligibe error and disturbance. It seems premature to say that this vindicates 

Heisenberg’s intuitions. 

Summing up, we emphasize that there is no contradiction between the BLW analysis and 

the Ozawa analysis: where Ozawa claims that the product of two quantities might for 

some states be less than the usual limit, BLW show that product of different quantities 

will satisfy this limit. The dispute is not about mathematically validity, but about how 

reasonable these quantities are to capture Heisenberg’s qualitative considerations. The 

present authors feel that, in this dispute, Ozawa’s analysis fail to be convincing. On the 

other hand, we also think that the BLW uncertainty relation is not satisfactory. Also, we 

would like to remark that both protagonists employ measures that are akin to standard 

deviations in being very sensitive to the tail behavior of probability distributions, and thus 

face a similar objection as raised in section 5. The final word in this dispute on whether a 

measurement uncertainty principle holds has not been reached, in our view. 

Bibliography 

• Bacciagaluppi, G. and A. Valentini, 2009, Quantum Theory at the Crossroads; 

reconsidering the 1927 Solvay Conference, Cambridge: Cambridge University Press. 

• Beller, M., 1999, Quantum Dialogue, Chicago: University of Chicago Press. 

• Beckner, W., 1975, “Inequalities in Fourier analysis”, Annals of Mathematics, 102: 159–

182. 

• Białinicki-Birula, I. and J. Micielski, 1975, “Uncertainty relations for information entropy 

in wave mechanics”, Communications in Mathematical Physics, 44: 129–132. 

• Bohr, N., 1928, “The Quantum postulate and the recent development of atomic 

theory”, Nature, (Supplement) 121: 580–590. Also in Bohr 1934, Wheeler and Zurek 1983, 

and Bohr 1985. 

• –––, 1929, “Introductory survey”, in Bohr 1934: 1–24. 

• –––, 1934, Atomic Theory and the Description of Nature, Cambridge: Cambridge 

University Press. Reissued in 1961. Appeared also as Volume I of The Philosophical 

Writings of Niels Bohr, Woodbridge, CT: Ox Bow Press, 1987. 

• –––, 1937, “Causality and complementarity”, Philosophy of Science, 4: 289–298. 

https://plato.stanford.edu/entries/qt-uncertainty/


37 
 

• –––, 1939, “The causality problem in atomic physics”, in New Theories in Physics, Paris: 

International Institute of Intellectual Co-operation. Also in Bohr 1996: 303–322. 

• –––, 1948, “On the notions of causality and complementarity”, Dialectica, 2: 312–319. 

Also in Bohr 1996: 330–337. 

• –––, 1949, “Discussion with Einstein on epistemological problems in atomic physics”, 

in Albert Einstein: philosopher-scientist. The library of living philosophers Vol. VII, P.A. 

Schilpp (ed.), La Salle: Open Court, pp. 201–241. 

• –––, 1985, Collected Works, Volume 6, J. Kalckar (ed.) Amsterdam: North-Holland. 

• –––, 1996, Collected Works, Volume 7, J. Kalckar (ed.) Amsterdam: North-Holland. 

• Bub, J., 2000, “Quantum mechanics as a principle theory”, Studies in History and 

Philosophy of Modern Physics, 31B: 75–94. 

• Busch, P., 1990, “ On the energy-time uncertainty relation”, Foundations of Physics, 20: 

1–32, 33–43. 

• Busch, P., P. Lahti, and R. Werner, 2013, “Proof of Heisenberg’s error-disturbance 

relation”, Physical Review Letters, 111, 160405. doi:10.1103/PhysRevLett.111.160405 

• Cassidy, D.C., 1992, Uncertainty, the Life and Science of Werner Heisenberg, New York: 

Freeman. 

• –––, 1998, “Answer to the question: When did the indeterminacy principle become the 

uncertainty principle?”, American Journal of Physics, 66: 278–279. 

• Chiribella, G. and R.W. Spekkens, 2016, Quantum Theory, Informational Foundations and 

Foils, Dordrecht: Springer. 

• Condon, E.U., 1929, “Remarks on uncertainty principles”, Science, 69: 573–574. 

• Eddington, A., 1928, The Nature of the Physical World, Cambridge: Cambridge University 

Press. 

• Einstein, A., 1919, “My Theory”, The Times (London), November 28, p. 13; reprinted as 

“What is the theory of relativity?”, in Ideas and Opinions, New York: Crown Publishers, 

1954, pp. 227–232. 

• Folse, H.J., 1985, The Philosophy of Niels Bohr, Amsterdam: Elsevier. 



38 
 

• Frank, R.L. and E.H. Lieb, 2012, “Entropy and the uncertainty principle”, Annales Henri 

Poincaré, 13: 1711–1717. 

• Heisenberg, W., 1925, “Über quantentheoretische Umdeutung kinematischer und 

mechanischer Beziehungen”, Zeitschrift für Physik, 33: 879–893. 

• –––, 1926, “Quantenmechanik”, Die Naturwissenschaften, 14: 899–894. 

• –––, 1927, “Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik and 

Mechanik”, Zeitschrift für Physik, 43: 172–198. English translation in Wheeler and Zurek 

1983: 62–84. 

• –––, 1927, “Ueber die Grundprincipien der ‘Quantenmechanik’ “ Forschungen und 

Fortschritte, 3: 83. 

• –––, 1928, “Erkenntnistheoretische Probleme der modernen Physik”, in Heisenberg 1984: 

22–28. 

• –––, 1930, Die Physikalischen Prinzipien der Quantenmechanik, Leipzig: Hirzel. English 

translation The Physical Principles of Quantum Theory, Chicago: University of Chicago 

Press, 1930. 

• –––, 1931, “Die Rolle der Unbestimmtheitsrelationen in der modernen 

Physik”, Monatshefte für Mathematik und Physik, 38: 365–372. 

• –––, 1958, Physics and Philosophy, New York: Harper. 

• –––, 1969, Der Teil und das Ganze, München : Piper. 

• –––, 1975, “Bemerkungen über die Entstehung der 

Unbestimmtheitsrelation”, Physikalische Blätter, 31: 193–196. Translation in Price and 

Chissick, 1977. 

• –––, 1984, Gesammelte Werke, Volume C1, W. Blum, H.-P. Dürr, and H. Rechenberg (eds), 

München: Piper. 

• Hilgevoord, J., 1996, “The uncertainty principle for energy and time I”, American Journal 

of Physics, 64: 1451–1456. 

• –––, 1998, “The uncertainty principle for energy and time II”, American Journal of Physics, 

66: 396–402. 

• –––, 2002, “Time in quantum mechanics”, American Journal of Physics, 70: 301–306. 



39 
 

• –––, 2005, “Time in quantum mechanics: a story of confusion. Studies in History and 

Philosophy of Modern Physics, 36: 29–60. 

• Hilgevoord, J. and D. Atkinson, 2011, “Time in quantum mechanics”, in The Oxford 

Handbook of Philosophy of Time, C. Callender (ed.), Oxford: Oxford University Press, pp. 

647–662. 

• Hilgevoord, J. and J. Uffink, 1988, “The mathematical expression of the uncertainty 

principle”, in Microphysical Reality and Quantum Description, A. van der Merwe et al. 

(eds.), Dordrecht: Kluwer, pp. 91–114. 

• –––, 1990, “A new view on the uncertainty principle”, in Sixty-Two years of Uncertainty, 

Historical and Physical Inquiries into the Foundations of Quantum Mechanics, A.E. Miller 

(ed.), New York: Plenum, pp. 121–139. 

• –––, 1991, “Uncertainty in prediction and inference”, Foundations of Physics, 21: 323–

341. 

• Honner, J., 1987, The Description of Nature: Niels Bohr and The Philosophy of Quantum 

Physics, Oxford: Clarendon Press. 

• Jammer, M., 1974, The Philosophy of Quantum Mechanics, New York: Wiley. 

• Jordan, P., 1927, “Über eine neue Begründung der Quantenmechanik II”, Zeitschrift für 

Physik, 44: 1–25. 

• Kaiser, H., S.A. Werner, and E.A. George, 1983, “Direct measurement of the longitudinal 

coherence length of a thermal neutron beam”, Physical Review Letters, 50: 560. 

• Kennard, E.H., 1927, “Zur Quantenmechanik einfacher Bewegungstypen”, Zeitschrift für 

Physik, 44: 326–352. 

• Landau, H.J. and H.O. Pollak, 1961, “Prolate spheroidal wave functions; Fourier analysis 

and uncertainty II”, Bell Systems Technical Journal, 40: 63–84. 

• Maassen, H. and J. Uffink, 1988, “Generalized entropic uncertainty relations”, Physical 

Review Letters, 60: 1103–1106. 

• Miller, A.I., 1982, “Redefining Anschaulichkeit”, in: A. Shimony and H.Feshbach 

(eds) Physics as Natural Philosophy, Cambridge, MA: MIT Press. 

• Moore, W., 1989, Schrödinger, Life and Thought, Cambridge: Cambridge University Press, 

p. 221. 



40 
 

• Muga, J.G., R. Sala Mayato, and I.L. Egusquiza (eds.), 2002, Time in quantum mechanics, 

Berlin: Springer. 

• Muller, F.A., 1997, “The equivalence myth of quantum mechanics”, Studies in History and 

Philosophy of Modern Physics, 28: 35–61, 219–247; ibid. 30(1999): 543–545. 

• Murdoch, D., 1987, Niels Bohr’s Philosophy of Physics, Cambridge: Cambridge University 

Press. 

• Nairz, O., M. Andt, and A. Zeilinger, 2002, “Experimental verification of the Heisenberg 

uncertainty principle for fullerene molecules”, Physical Review A, 65, 032109. 

doi:10.1103/PhysRevA.65.032109 

• Ozawa, M., 2003, “Universally valid formulation of the Heisenberg uncertainty relation on 

noise and disturbance in measurement. Physical Review A, 67: 042105. 

• Pashby, T., 2015, “Time and quantum theory: A history and a prospectus”, Studies in 

History and Philosophy of Modern Physics, 52: 24–38. 

• Pauli, W., 1979, Wissentschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., 

Volume 1 (1919–1929) A. Hermann, K. von Meyenn and V.F. Weiskopf (eds) Berlin: 

Springer. 

• Popper, K., 1967, “Quantum mechanics without ‘the observer’”, in Quantum Theory and 

Reality, M. Bunge (ed.), Berlin: Springer. 

• Price, W.C. and S.S. Chissick (eds), 1977, The Uncertainty Principle and the Foundations of 

Quantum Mechanics, New York: Wiley. 

• Regt, H. de, 1997, “Erwin Schrödinger, Anschaulichkeit, and quantum theory”, Studies in 

History and Philosophy of Modern Physics, 28: 461–481. 

• Robertson, H.P., 1929, “The uncertainty principle”, Physical Review, 34: 573–574; 

reprinted in Wheeler and Zurek 1983: 127–128. 

• Scheibe, E., 1973, The Logical Analysis of Quantum Mechanics, Oxford: Pergamon Press. 

• Uffink, J., 1985, “Verification of the uncertainty principle in neutron 

interferometry”, Physics Letters, 108 A: 59–62. 

• –––, 1990, Measures of Uncertainty and the Uncertainty Principle, Ph.D. thesis, University 

of Utrecht, available online with online errata. 

http://www.projects.science.uu.nl/igg/jos/publications/proefschrift.pdf
http://www.projects.science.uu.nl/igg/jos/publications/proefschrifterrata.pdf


41 
 

• –––, 1993, “The rate of evolution of a quantum state”, American Journal of Physics, 61: 

935–936. 

• –––, 1994, “The joint measurement problem”, International Journal of Theoretical 

Physics, 33: 199–212. 

• Uffink, J. and J. Hilgevoord, 1985, “Uncertainty principle and uncertainty 

relations”, Foundations of Physics, 15: 925–944. 

• von Neumann, J., 1932, Mathematische Grundlagen der Quantenmechanik, Berlin: J. 

Springer. 

• Wheeler, J.A. and W.H. Zurek (eds), 1983, Quantum Theory and Measurement, Princeton, 

NJ: Princeton University Press. 

Academic Tools 

 

How to cite this entry. 

 

Preview the PDF version of this entry at the Friends of the SEP Society. 

 

Look up this entry topic at the Indiana Philosophy Ontology Project (InPhO). 

 

Enhanced bibliography for this entry at PhilPapers, with links to its database. 

Other Internet Resources 

• Busch, P., P. Lahti, and R. Werner, 2014, “Measurement uncertainty: Reply to 

critics,” February 13, arXiv:1402.3102 [quant-ph]. 

• Ozawa, M., 2013, “Disproving Heisenberg’s error-disturbance relation,” August 16, 

arXiv:1308.3540 [quant-ph]. 

• Exhibit on Heisenberg and the uncertainty principle, from the American Institute 

of Physics 

• The Nobel prize site, containing a short biography of Heisenberg and his 1932 

Nobel presentation speech 

Source: https://plato.stanford.edu/entries/qt-uncertainty/ 

https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=qt-uncertainty
https://leibniz.stanford.edu/friends/preview/qt-uncertainty/
https://leibniz.stanford.edu/friends/
https://www.inphoproject.org/entity?sep=qt-uncertainty&redirect=True
https://www.inphoproject.org/
http://philpapers.org/sep/qt-uncertainty/
http://philpapers.org/
https://arxiv.org/pdf/1402.3102v1
https://arxiv.org/pdf/1402.3102v1
https://arxiv.org/pdf/1308.3540v1
http://www.aip.org/history/heisenberg/
http://nobelprize.org/physics/laureates/1932/heisenberg-bio.html
https://plato.stanford.edu/entries/qt-uncertainty/

